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Equations of granular hydrostatics are used to compute the phase diagram of the recently discovered van der
Waals–like phase separation in a driven granular gas. The model two-dimensional system consists of smooth
hard disks in a rectangular box, colliding inelastically with each other and driven by a “thermal” wall at zero
gravity. The spinodal line and the critical point of the phase separation are determined. Close to the critical
point, the spinodal and binodal(coexistence) lines are determined analytically. Effects of the finite size of the
confining box in the direction parallel to the thermal wall are investigated. These include suppression of the
phase separation by heat conduction in the lateral direction and a change from supercritical to subcritical
bifurcation.
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I. INTRODUCTION

Granular gases(gases of inelastically colliding macro-
scopic particles) exhibit a plethora of symmetry-breaking in-
stabilities and clustering phenomena[1]. Their investigation
is useful both for testing and improving the models of granu-
lar flow, and for a deeper understanding of far-from-
equilibrium dynamics in general. In this work, we focus our
attention on a recently discovered phase separation instabil-
ity which occurs in a prototypical two-dimensional granular
system: an assembly of monodisperse hard disks in a box,
colliding inelastically with each other and driven, at zero
gravity, by a rapidly vibrating or thermal wall. An immediate
consequence of the inelasticity of the particle collisions is the
formation of a laterally uniform cluster(the stripe state) at
the wall opposite to the driving wall[2,3]. Both granular
hydrodynamics and direct molecular-dynamics simulations
show that this simple clustering state can exhibit spontane-
ous symmetry-breaking instability leading to phase separa-
tion: coexistence of dense and dilute regions of the granulate
(droplets and bubbles) along the wall opposite to the driving
wall [4–10]. This far-from-equilibrium phase separation is
strikingly similar to the gas-liquid transition in the classical
van der Waals model. The objective of this work is a system-
atic investigation of the steady states in this system and com-
putation of the phase diagram starting from the Navier-
Stokes granular hydrodynamics. Granular hydrodynamics is
expected to be an accurate leading-order theory when the
mean free path of the particles is much less than a character-
istic inhomogeneity scale of the problem, and the mean time
between two consecutive collisions of a particle is much less
than any time scale the hydrodynamics attempts to describe.
In addition, we should work with sufficiently low particle
densities, when an account of binary collisions and volume
exclusion effects is sufficient[11]. As will be shown below
(see also Ref.[2]), the requirement that the mean free path be
small compared to the inhomogeneity scale implies in this
system that particle collisions must be nearly elastic.

For steady states with a zero mean flow, granular hydro-
dynamic equations reduce to granularhydrostatics, see Sec.
II. The hydrostatic problem is fully described by three scaled

parameters introduced below: the area fraction of the par-
ticles f, the aspect ratio of the boxD, and the effective hy-
drodynamic inelastic heat loss parameterL [4,6]. By solving
the hydrostatic equations numerically, we obtain, in Sec. II,
the spinodal line and the critical point of the phase separation
in the limit of D→`. Sec. III deals with the same limit of
D→` but, in addition, assumes a close proximity to the
critical point. Here we find the spinodal and binodal(coex-
istence) lines analytically and determine the structure of the
steady-state domain wall, separating the more dense and less
dense stripes in the lateral direction. Effects of finite aspect
ratio D are addressed in Sec. IV. These include suppression
of the phase separation by heat conduction in the lateral di-
rection and a change from supercritical to subcritical bifur-
cation. Sec. V includes a brief discussion of the results and
proposes directions of future work.

II. HYDROSTATICS OF PHASE SEPARATION: MODEL
AND GENERAL RESULTS

In this section, we formulate the model, briefly review the
stripe state, and compute the spinodal line and the critical
point of the phase separation for a laterally infinite system,
D→`.

A. Model

Consider an assembly of inelastically colliding hard disks
of diameterd and massm=1, moving in a box with dimen-
sions Lx3Ly at zero gravity. Collisions of disks with the
walls x=0 andy= ±Ly/2 are assumed elastic. Alternatively,
periodic boundary conditions in they direction can be im-
posed. We refer to they direction as the lateral direction of
the system. In a laterally infinite system,Ly→`. The par-
ticles are driven by a “thermal” wall: a constant granular
temperatureT0 is prescribed atx=Lx. The inelasticity of the
particle collisions is parametrized by a constant normal res-
titution coefficientr; we will work in the nearly elastic limit
1−r2!1. We also assume a moderate number densityn:
n/nc,0.5, wherenc=2/sÎ3d2d is the hexagonal close pack-
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ing density. The last two assumptions allow us to employ the
Navier-Stokes granular hydrodynamics. Throughout this
work, we will use for concrete calculations the constitutive
relations suggested by Jenkins and Richman[11]. These re-
lations were derived by analogy with those obtained in the
framework of a successful but still empiric Enskog theory
[12]. Detailed comparisons with molecular-dynamics(MD)
simulations show that the error margin of the Enskog heat
conductivity can reach as much as 10–15%[13]. Still, these
relations seem to be the best available constitutive relations
for moderate densities. Importantly, most of the analytical
results in this work are written in a more general form, which
only assumes a Navier-Stokes structure of hydrodynamic
equations. The Jenkins-Richman’s relations are used only for
computing numerical factors.

Energy input at the thermal wall balances the energy loss
due to interparticle collisions, so we assume that the system
reaches a steady state with a zero mean flow. Therefore, the
full hydrodynamic equations reduce to hydrostatic equations,

p = const and= · sk = Td = I , s1d

wherep is the granular pressure,T is the granular tempera-
ture,k is the thermal conductivity, andI is the rate of energy
loss by collisions. Notice that we did not account, in the
second of Eqs.(1), for an additional(inelastic) contribution
to the heat flux which is proportional to thedensitygradient.
For a dilute gas, this term was derived in Ref.[14]. It can be
neglected in the nearly elastic limit which is assumed
throughout this paper.

The constitutive relations entering Eqs.(1) include the
equation of statep=psn,Td and expressions fork and I in
terms of n and T. In our notation, these relations can be
written as[11]

p = nTs1 + 2G8d,

k =
2dnT1/2G8

Îp
F1 +

9p

16
S1 +

2

3G8
D2G ,

I =
8s1 − rdnT3/2G8

Îpd
,

G8 =

nS1 −
7n

16
D

s1 − nd2 , s2d

wheren=nspd2/4d is the solid fraction. Let us rescale the
coordinates byLx: r /Lx→ r . In the rescaled coordinates, the
box dimensions become 13D, whereD=Ly/Lx is the aspect
ratio of the box. Introducing a normalized inverse density
zsx,yd=nc/nsx,yd and eliminating the temperature, one can
rewrite Eqs.(1) as a single equation forzsx,yd [2,4,6],

= · fFszd = zg = LQszd, s3d

whereFszd=AszdBszd,

Aszd =

GF1 +
9p

16
S1 +

2

3G
D2G

z1/2s1 + 2Gd5/2 ,

Bszd = 1 + 2G +
p

Î3

zSz+
p

16Î3
D

Sz−
p

2Î3
D3 ,

Qszd =
6

p

z1/2G

s1 + 2Gd3/2,

Gszd =
p

2Î3

z−
7p

32Î3

Sz−
p

2Î3
D2 . s4d

The parameter

L =
2p

3
s1 − rdSLx

d
D2

, s5d

which appears on the right-hand side of Eq.(3), is the hy-
drodynamic inelastic heat loss parameter. Notice that it can
be made arbitrarily large(by taking large enoughLx/d), no
matter how small the inelasticityq=s1−rd /2 is.

Now we specify the boundary conditions for Eq.(3). At
the elastic wallsx=0 andy= ±D /2, the normal component
of the heat flux must vanish. In terms of the inverse density
z, one has=nz=0 at these three walls. Here, indexn denotes
the gradient component normal to the wall. Alternatively, for
the periodic boundary conditions we should demandzsx,y
+2p /Dd=zsx,yd. The constant temperature at the thermal
wall x=1 yields the simple condition

zsx = 1,yd = const s6d

with an a priori unknown constant. As the total number of
particlesN is fixed, the normalization condition

1

D
E

0

1E
−D/2

D/2 dxdy

zsx,yd
= f s7d

should be imposed, wheref =knl /nc is the area fraction of
the grains andknl=N/ sLxLyd is the average number density
of the grains.

Equation (3) with the boundary conditions at the four
walls and Eq.(7) make a complete set. Notice that the
steady-statedensitydistribution is independent of the wall
temperatureT0 [4]. The wall temperature only sets the scale
of the temperatureprofile in the system, and affects the
steady-statepressure. The governing parameters of the sys-
tem are the scaled numbersL, f, andD. For a laterally infi-
nite system,D→`, only two governing parametersL and f
remain in the hydrostatic formulation.

Let us define the scaled temperatureT̃=T/T0 and pressure
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p̃ =
p

ncT0
= T̃Pszd, s8d

where

Pszd =
1 + 2Gszd

z
. s9d

Once the steady-state density profile and the(uniform)
steady-state pressurep̃ are found, Eq.(8) determines the

steady-state temperature profileT̃sx,yd.
The vector fieldFszd¹z entering Eq.(3) is, up to a sign,

the scaled heat flux. Equation(3) becomes simpler if we
introduce, as a new variable, the scalar potential of the heat
flux: c=ezFsz8ddz8. To avoid a divergence of the integral at
infinity, we account for the diverging part directly, by ex-
tracting the first two terms of expansion ofFszd at z→`,

Fszd =
Î3

2
z1/2 −

7p

64
z−1/2 + fszd. s10d

The integral of fszd already converges at infinity, and we
obtain

cszd =
1
Î3

z3/2 +
7p

32
z1/2 −E

z

`

fszddz. s11d

The potentialc grows monotonically withz, see Fig. 1. Now
Eq. (3) becomes a nonlinear Poisson equation[9],

=2c = LQscd, s12d

where byQscd we actually meanQfzscdg here and in the
following. The functionQscd is depicted in Fig. 2. We will
be dealing with Eq.(12) throughout the paper. The boundary
conditions forcsx,yd are identical to the boundary condi-
tions for zsx,yd,

U ]csx,yd
]x

U
x=0

= 0, s13d

cs1,yd = const, s14d

supplemented by either no-flux or periodic boundary condi-
tion at the wallsy= ±D /2. Note thatz is assumed to be
expressed throughc in Eq. (7).

Importantly,Qscd decreases with an increase ofc at large
enoughc. [In the dilute limit, c@1, one hasQscd~c−1/3.]
This implies nonuniqueness of the steady-state solutions of
Eq. (12) [15], and opens the way to phase separation and
coexistence.

B. Stripe states, spinodal line, and critical point

The simplest steady state of the system is the “stripe,” a
laterally uniform state which corresponds to the
y-independent solutionz=Zsxd [2] or c=Csxd. It is de-
scribed by the equation

C9 = LQsCd, s15d

with the boundary condition

C8s0d = 0 s16d

and the normalization condition

E
0

1 dx

ZfCsxdg
= f . s17d

Here and in the following, the primes denote thex deriva-
tives. As Eq.(15) does not include the first derivativeC8sxd,
it has an “energy” integral and therefore is integrable. A
numerical solution, however, is more practical. Figure 3
gives an example of the density profile of the stripe state in
terms of the scaled densitynsxd /nc=Z−1sxd and the auxiliary
functionsCsxd and Zsxd for L=344.2 andf =0.095, corre-
sponding to the critical point of the phase separation(see
below).

The stripe state problem(15)–(17) can be recast into a
more convenient initial value problem if we use, instead of
the normalization condition(17), a boundary condition

Cs0d = a. s18d

Indeed, the initial value problem defined by Eqs.(15), (16),
and (18) has a unique solutionCsx,a,Ld. Having found it,
one can calculate the area fractionf = fsa,Ld from Eq. (17).
Importantly, for the Enskog-type constitutive relations(4),
fsa,Ld turns out to be a monotonic function ofa for any
fixed L. This enables one to use the pair of numberssa,Ld

FIG. 1. The effective heat flux potentialc vs the inverse scaled
densityz. The inset shows a blowup of the region of 1,z,4.

FIG. 2. The effective heat loss functionQscd which appears on
the right-hand side of Eq.(12).
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instead ofsf ,Ld for the parametrization of all possible stripe
states. The parametrizationsa,Ld will be often used in the
following.

In a wide region of the parameter spacesf ,L ,Dd, the
stripe state undergoes a phase separation instability and gives
way to a laterally asymmetric state[4–10]. The instability is
driven by negative compressibility of the stripe state in the
lateral direction[6,7], resulting from energy loss in particle

collisions. LetP=T̃PsZd be the scaled steady-state gas pres-
sure of the stripe state. In the limit ofD→`, the spinodal
region in the sf ,Ld plane is defined by the condition
s]P/]fdL,0. As P is constant in space, it can be conve-

niently computed at the thermal wallx=1 [6]. HereT̃=1 and
therefore

P = Psa,Ld = uPfzscdguc=Cs1,a,Ld. s19d

Alternatively,

Psf,Ld =
1 + 2GfZ1sf,Ldg

Z1sf,Ld
, s20d

whereZ1=Zsx=1d. The spinodal line of the phase separation
(again, in the limit ofD→`) is determined by the condition

]Psf,Ld
]f

= 0. s21d

Solving Eqs.(15)–(18), we computed from Eq.(20) the Psfd
curves at differentL, see Fig. 4(a). These computations yield
a critical point sfc,Pcd [equivalently, sfc,Lcd, or sac,Lcd].
For L,Lc, the pressureP increases monotonically withf
(as in an elastic gas), so there is no phase separation insta-
bility. For L.Lc, the pressureP versusf has a nonmono-
tonic part. The maximum and minimum points ofPsfd at
different L yield the spinodal line. This line in thesf ,Pd
plane is shown by the solid curve in Fig. 4(a). Figure 4(a)
also shows two straight lines. These are the dilute-limit as-
ymptotes ofPsfd and of the low-density branch of the spin-

odal line, respectively(see the next subsection). Figure 4(b)
shows, on a different scale, thePsfd dependence for a fixed
L within the spinodal region, to make the region of negative
lateral compressibility more visible. Figure 5 depicts a part
of the spinodal line, together with the asymptotics of the
spinodal and binodal(coexistence) lines in the vicinity of the
critical point, found analytically in Sec. III.

Now let us again use thea parametrization of the stripe
solution. Equation(21) for the spinodal line is equivalent to

]Psa,Ld
]a

= 0. s22d

The critical point is the merging point of the maximum and
minimum points of thePsfd [or Psad] curve at differentL.
Therefore, the critical point is defined by the following two
conditions:

]Psa,Ld
]a

sac,Lcd = 0, s23d

FIG. 3. Spatial profiles of the stripe state forL=344.2 andf
=0.095, which are the critical values ofL and f for the constitutive
relations (4). Shown in the main part of the figure is the scaled
densitynsxd /nc=Z−1sxd. The inset showsZsxd (the solid line) and
the heat flux potentialCsxd (the dashed line), obtained by solving
Eqs.(15)–(17).

FIG. 4. The spinodal line(the solid line) and thePsfd curves for
the stripe state, forL=53103 and L=280 (the dashed and dash-
dotted lines, respectively) (a). The two dotted straight lines are the
dilute-limit asymptotesP1sL , fd= f andP2sL , fd= f /2 (a). (b) shows
the Psfd curve for L=53103 in a different scale, to make the
region of negative compressibilitydP/df,0 more visible.
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]2Psa,Ld
]a2 sac,Lcd = 0. s24d

For an assembly of hard spheres below the freezing point
one hass]p/]ndT.0, which follows usdP/dZduZ=Z1sa,LdÞ0.
Therefore, Eq.(22) for the spinodal line is equivalent to

]Cs1,a,Ld
]a

= 0, s25d

while Eqs.(23) and (24) for the critical point can be rewrit-
ten as

]C

]a
s1,ac,Lcd = 0, s26d

]2C

]a2 s1,ac,Lcd = 0 s27d

(recall that the first argument of functionC and of its deriva-
tives stands forx). Solving Eqs.(15), (16), (18), (26), and
(27) numerically, we find the critical point

ac = 6.580 . . . , s28d

Lc = 344.2 . . . . s29d

Using Eqs.(17) and (20), we find the critical point in the
variablesf ,P,

fc = fsac,Lcd = 0.0950 . . . , s30d

Pc = Psac,Lcd = 0.0373 . . . . s31d

We checked that the maximum density of the stripe states,
corresponding to the spinodal shown in Fig. 4(a), is less than
0.5 nc, which is within the assumed validity domain of the
constitutive relations(4). At the critical point itself, the maxi-
mum scaled density of the stripe state isnsx=0,ac,Lcd /nc

=1/Zsx=0,ac,Lcd=0.2086. . ., a moderate value.
The critical point, predicted by the Enskog-type granular

hydrodynamics, agrees fairly well with molecular-dynamics
simulations by Sotoet al. [7,10]. The issues of accuracy of
the hydrodynamic results are discussed in Sec. V.

C. Dilute-gas limit

In the dilute-gas limit,Z@1, we can obtain the two
straight-line asymptotes shown in Fig. 4(a): of the stripe
pressurePsf ,Ld and of the low-density branch of the spin-
odal line. Here the stripe state equation is

d2

dx̄2Z3/2 = 3Z−1/2, s32d

where a different rescaling of the coordinate is introduced:
x̄=xÎL. (Notice that in the physical coordinatexphys, the new
rescaling does not includeLx.) The boundary conditions are

Zsx̄ = 0d = Z0 and
dZ

dx̄
sx̄ = 0d = 0,

whereZ0 is related tof andL by the normalization condition
e0

ÎLZ−1dx̄= fL1/2. The solution to this problem is[6]

x̄ =
Z0

2
sarccoshÎz + Îz2 − zd, s33d

wherez=Z/Z0 and

Z0 =
4L1/2

2fL1/2 + sinhs2fL1/2d
. s34d

In the dimensional units, the density profile(33) is deter-
mined by a single parameter:j= fL1/2. The scaled pressure
of the stripe state is

P =
1

Z1
=

2j + sinhs2jd
4L1/2 cosh2 j

, s35d

where Z1=Zsx=1d=Z0 cosh2 j. Assumingj!1, we obtain
from Eq. (35) the dilute-limit asymptotePsf ,Ld= f.

The low-density asymptote of the spinodal is determined
from the condition

S ]P

]f
D

L

= L1/2S ]P

]j
D

L

= 0.

This equation, together with Eq.(35), yields cothsjd=j [6].
Substituting this result back into Eq.(35), we obtain
Psf ,Ld= f /2.

Using the dilute-limit Eqs.(33) and (34), one can verify
that validity of granular hydrodynamics as an accurate

FIG. 5. The spinodal line(the solid line) and the spinodal and
binodal asymptotics close to the critical point(the dashed lines) in
the variablesf ,P (a) and f ,L (b).
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leading-order theory in this problem indeed demands nearly
elastic collisions(see also Ref.[2]). Equation(33) implies
that the inverse scaled densityZsxd can be presented asZ
=Z0Fsx̄/Z0d, where functionF does not include any addi-
tional parameters. Therefore, the characteristic scale of inho-
mogeneity of the stripe state in thex direction in the rescaled
coordinatex̄ is of the order ofZ0. Going back to the physical
coordinate,x̄=L1/2xphys/Lx,q1/2xphys/d, we see that the in-
homogeneity scale is of the order ofZ0d/q1/2,sn0dq1/2d−1.
For hydrodynamics to be valid, this quantity should be much
greater than the characteristic mean free path of the particles

l̄, which is of the order ofsn0dd−1. Therefore, the validity of
hydrodynamics in this system requiresq1/2!1, quite a strin-
gent condition. An additional discussion of this condition is
presented in Sec. V.

III. SPINODAL AND BINODAL LINES IN THE VICINITY
OF THE CRITICAL POINT

A. Mathematical preliminaries

In the vicinity of the critical pointac,Lc (at L.Lc), the
two-dimensional, phase separated state is very close to the
one-dimensional stripe state. Therefore, the spindal and bin-
odal lines can be obtained by expandingcsx,yd around the
stripe-state solutionCsx,a,Ld in the power series ofa−ac

and L−Lc. For brevity of notation, the subscriptsa and L
will denote the partial derivatives] /]a and ] /]L, respec-
tively, while the prime will stand for the partial derivative
] /]x as before. As will become clear shortly, the following
functions ofx at the critical point need to be computed:

C8, Ca, CL, CaL, Caa, andCaaa.

As the stripe solutionCsx,a,Ld is available in quadrature,
the derivatives ofC with respect to parametersa andL are
known. More practical, however, is a different approach. As
shown in the Appendix, all these functions[and an additional
function Fsxd that we will need, see Eq.(60) below] can be
expressed as solutions of the linear differential equation,

w9sxd − LcQcfCsx,ac,Lcdg wsxd = Ssxd s36d

with different source termsSsxd and different boundary con-
ditions. For the first derivatives,C8 andCa, the source term
vanishes. Therefore, the rest of the functions can be ex-
pressed throughC8 andCa, see the Appendix.

B. Spinodal line in the vicinity of the critical point

It follows from Eqs.(26) and (27) that the first nonvan-
ishing term in the expansion ofCsx,a,Ld in the powers of
a−ac at the critical point is the cubic termsa−acd3. There-
fore, we should keep the following terms in the expansion:

Csx,a,Ld = Csx,ac,Lcd + LcCLsx,ac,Lcdd

+ acCasx,ac,Lcdu +
ac

2

2
Caasx,ac,Lcdu2

+ acLcCaLsx,ac,Lcdud +
ac

3

6
Caaasx,ac,Lcdu3,

s37d

where an order parameteru=a/ac−1 and a control param-
eterd=L /Lc−1 have been introduced.

To obtain the equation of the spinodal line, we differenti-
ate Eq. (37) with respect toa, put x=1, and use Eqs.
(25)–(27). The result is

d = −
ac

2Caaas1,ac,Lcd
2LcCaLs1,ac,Lcd

u2, s38d

or

L − Lc = A1sa − acd2, s39d

where

A1 = −
Caaas1,ac,Lcd
2CaLs1,ac,Lcd

. s40d

One can see from Eq.(38) that, close to the critical point,
d=Osu2d. That is why we could neglect the term proportional
to CLLd2=Osu4d in Eq. (37).

The coefficientsCaaas1,ac,Lcd andCaLs1,ac,Lcd can be
computed numerically, see the Appendix,

Caaas1,ac,Lcd = 0.024 34̄ , s41d

CaLs1,ac,Lcd = − 0.001 926̄ , s42d

so A1=6.317̄ .
Equation(39) can be rewritten in terms ofL and f. Using

Eq. (17), we expandZsx,a,Ld near the critical stripe solu-
tion Zcsxd;Zsx,ac,Lcd up to the first order ina−ac (which
suffices close to the critical point) and obtain

f − fc = fasac,Lcdsa − acd, s43d

where

fasac,Lcd = −E
0

1 Casx,ac,Lcd
fZcsxdg2FfZcsxdg

dx. s44d

Evaluating this integral numerically, we obtainfasac,Lcd=
−0.004 396̄ . As a result, Eq.(39) can be rewritten as

L − Lc = A2sf − fcd2, s45d

where

A2 = A1ffasac,Lcdg−2 = 3.268¯ 3 105. s46d

Now we compute the spinodal line in thef ,P plane. Ex-
panding Eq.(19) in the vicinity of z=Zs1,ac,Lcd, we obtain

P = Pc + Pc
scdCLs1,ac,LcdsL − Lcd + ¯ , s47d

where the higher-order terms are negligible, and

Pc
scd = US 1

Fszd
dP

dz
DU

z=zfCs1,ac,Lcdg
= − 2.969̄ 3 10−4.

s48d

The negative value ofPc
scd is a consequence of our defini-

tions of z andc and of the conditions]p/]ndT.0. Combin-
ing Eqs.(47) and (45), we obtain
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P − Pc = − A5sf − fcd2, s49d

where A5=−A2CLs1,ac,LcdPc
scd. A numerical calculation

(see the Appendix) givesCLs1,ac,Lcd=0.2203̄ , therefore
A5=21.38̄ . The spinodal asymptotics(49) and (45) are
shown, together with the full spinodal line, in Figs. 5(a) and
5(b), respectively.

C. Two-phase coexistence and binodal line in the vicinity
of the critical point

1. Laterally nonuniform states

For a steady state with a broken lateral symmetry, the
function csx,yd depends on its two arguments. In a laterally
infinite system, the asymptotics ofcsx,yd at y→ ±` corre-
spond to two different stripe states. Therefore, it is natural to
replace the no-flux or periodic boundary conditions in the
lateral direction by the condition

csx,y → ± `d = c±sxd, s50d

wherec−sxdÞc+sxd. One way to solve the problem, is de-
termined by Eqs.(12)–(14). and Eq.(50), is to introduce an
unknown functionasyd so that

cs0,yd = asyd,

asy → ± `d = a± = const s51d

with a−Þa+. What equation shouldasyd satisfy close to the
critical point? Here we can look forcsx,yd in the form of a
weakly and slowly modulated stripe state,

csx,yd = Cfx,asyd,Lg + fsx,yd, s52d

whereasyd=acf1+usydg is a slow function ofy, fsx,yd is a
small correction toC, and ay-dependent order parameter
usyd!1 is introduced. We will see shortly that the character-
istic length scale ofasyd (the domain-wall width) is of the
order ofd−1/2,u−1, while f,u3. Hence, everyy derivative
introduces smallness of orderu. Making the ansatz(52) in
Eq. (12) and neglecting terms of a higher order thanu3, we
arrive at the following linear problem forfsx,yd:

]x
2f − LcQcfCcsxdgf = − acCasx,ac,Lcd

d2u

dy2 , s53d

fs0,yd = ]xfs0,yd = 0. s54d

The first boundary condition in Eq.(54) elmiminates the ar-
bitrariness in the choice offsx,yd, while the second one
follows from Eqs.(13) and(16). Additional boundary condi-
tions include

Cs1,a,Ld + fs1,yd = const s55d

at the thermal wall[see Eq.(14)], and

fsx,y → ± `d = 0 s56d

[see Eq.(50)]. Notice, however, that Eqs.(55) and (56) do
not enter the problem(53) and (54) eliminate for fsx,yd.
Equation(53) can be solved by a separation of variables,

fsx,yd = acFsxd
d2usyd

dy2 . s57d

The functionFsxd is the solution of the following problem:

F9 − LcQcfCcsxdgF = − Casx,ac,Lcd, s58d

Fs0d = F8s0d = 0, s59d

which again belongs to the class of equations(36). The so-
lution (see the Appendix) is

Fsxd =
1

LcQsacd
FCasx,ac,LcdE

0

x

C8Cadj

− C8sx,ac,LcdE
0

x

Ca
2djG , s60d

where the functionsC8 and Ca under the integrals overj
have argumentsj ,ac, andLc. Now we impose the boundary
condition (55),

Cs1,a,Ld + acFs1d
d2u

dy2 = const. s61d

As the second term on the right side of Eq.(55) is of order
u3, we should keep terms up tou3 in the expansion of
Csx,a,Ld near the critical pointac,Lc. This expansion has
the same form as Eq.(37), with the only difference being
that nowu depends ony. Evaluating this expansion atx=1
and using the definitions of the critical point[Eqs.(26) and
(27)], we arrive at the desired equation forusyd,

ud − A3u
3 + A4

d2u

dy2 = a = const, s62d

where

A3 = −
ac

2Caaas1,ac,Lcd
6LcCaLs1,ac,Lcd

=
ac

2A1

3Lc
= 0.264 85̄ , s63d

A4 =
Fs1d

LcCaLs1,ac,Lcd
= 0.5212̄ , s64d

and [see Eq.(60)]

Fs1d = −
C8s1,ac,Lcd

LcQsacd
E
0

1

Ca
2dx= − 0.3457̄ . s65d

2. Domain wall and the binodal line

One integration of Eq.(62) yields

A4Sdu

dy
D2

=
A3

2
Su2 −

d

A3
D2

+ 2au + b, s66d

whereb=const. To find the constantsa andb, we are using
the boundary conditions in the lateral direction. In an infinite
system, these are
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usy → ± `d = u± = const s67d

with u−Þu+. Equations(66) and (67) appear in numerous
problems of domain-wall structure; see, for example, Ref.
[16]. The boundary conditions(67) yield a=b=0, so the
domain-wall solution is

u = ±Î d

A3
tanhFÎ d

2A4
sy − y0dG , s68d

where6 refers to two possible orientations, and the arbitrary
constanty0 describes the position of the domain wall. The
domain-wall solution exists only ifd.0, that is, L.Lc.
Equation(68) confirms our assumption that the characteristic
width of the domain wall isOsd−1/2d. Returning for a mo-
ment to the physical(unscaled) variables, we see that the
domain-wall width isOsLx/d1/2d, which is much larger than
Lx.

The values of the order parameter far from the domain
wall are

u± =
a±

ac
− 1 = ±Î d

A3
. s69d

Equation (69), rewritten in terms ofa and L, defines the
binodal (coexistence) line,

L − Lc =
A1

3
sa − acd2, s70d

or, in terms off andL,

L − Lc =
A2

3
sf − fcd2. s71d

Compare these expressions with Eqs.(39) and (45) for the
spinodal.

The binodal line can also be expressed in terms off and
P. The derivation almost coincides with that for the spinodal
line, see the end of Sec. III B. The only difference is that
now we substitute into Eq.(47) the binodal relation(71)
rather than the spinodal relation(45). The result is

P − Pc = −
A5

3
sf − fcd2. s72d

The physical meaning of the binodal asymptotics(72) and
(71) is straightforward. First, the two coexisting stripes with
f = f1 and f = f2 have equal pressures:Psf1d=Psf2d. Secondly,
close to the critical point,f1 and f2 are symmetric with re-
spect tofc, that is, sf1+ f2d /2= fc. The binodal asymptotics
(72) and (71) are depicted in Figs. 5(a) and 5(b), respec-
tively.

Note that our results for the spinodal and binodal lines
[see Eqs.(45) and (71)] are consistent with the results ob-
tained by Sotoet al. [7,10] in the framework of their phe-
nomenological “van der Waals equation.” Indeed, our Eqs.
(45) and(71) have the same quadratic forms as those obtain-
able from the van der Waals equation[7,10]. Furthermore,
the ratio of the coefficients of the spinodal and binodal lines
(45) and (71) equals 3, in agreement with what the van der
Waals equation predicts.(Note that the coefficients them-

selves of the van der Waals equations have not been derived
yet.) In addition, Sotoet al. [10] reported a binodal line
found in molecular-dynamics simulations of this system for a
moderate value of the parameter«=d/Lx=0.01. See Sec. V
for a discussion of the role of this parameter.

Soto et al. [10] also suggested an interpretation of the
binodal line in terms of “Maxwell’s construction.” By anal-
ogy with the classical van der Waals gas[17], Maxwell’s
construction can be written as

E
f1

f2 Psf,Ld − Psf1,Ld
f2 df = 0, s73d

where the factorf2 in the denominator comes from the equal-
ity dV=ds1/ fd=−df / f2, whereV=1/ f is the(scaled) specific
volume. How does Eq.(73) compare to our result(72)? Con-
sider expression(19) for Psa,Ld. Close to the critical point,
it can be expanded in the powers ofu andd,

P = Pc + LcPLd + acLcPaLud + 1
6ac

3Paaau
3 + ¯ , s74d

where all the derivatives ofP are evaluated at the critical
point. Going over fromu to f − fc, one obtains

P = Pc + LcPLd +
LcPaLd

fa
sf − fcd +

Paaa

6fa
3 sf − fcd3 + ¯ ,

s75d

where the numerical coefficientfa is given by Eq.(44), and
the dots stand for terms of the order ofsf − fcd4 and higher. At
d.0 (when phase separation occurs), the coefficient in front
of f − fc is negative, while that in front ofsf − fcd3 is positive.
Note also that, in the vicinity of the critical point,d=Osf
− fcd2. Now we substitute Eq.(75), with the higher-order
terms neglected, into Eq.(73). In this order of perturbation
theory, one should putf = fc in the denominator of the inte-
grand. As a result, Eq.(73) reduces to the simple relation
sf1+ f2d /2= fc obtained above. Of course, the reason for this
agreement is the closeness to the critical point. In this sense,
Maxwell’s construction(73) does not give anything new.
Moreover, manydifferentconstructions, for example

E
f1

f2

fPsf,Ld − Psf1,Ldgdf = 0, s76d

are equally applicable in the vicinity of the critical point. Of
course, Maxwell’s construction would be valuable if it were
shown to be truefar from the critical point. At present, there
is no reason to believe this is the case, and the theoretical
form of the binodal line far from the critical point remains
unknown.

IV. FINITE SIZE EFFECTS: MARGINAL STABILITY AND
BIFURCATIONS

A. Marginal stability surface

The results presented in Secs. II and III are valid in the
limit of D→`. Already in the first paper[4] on the phase
separation instability, it was found that the instability, is sup-
pressed when the aspect ratio of the boxD=Ly/Lx is less
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than a threshold valueD*sf ,Ld. The physical mechanism of
suppression is heat conduction in the lateral direction, which
tends to erase the lateral temperature(and, therefore, density)
inhomogeneity. How do we generalize the spinodal line, ob-
tained forD→`, to finite D’s? Let us consider a small sinu-
soidal density perturbation, in the lateral direction, around a
stripe state. The fastest growing(or the slowest decaying)
perturbation is the one with the longest wavelength, compat-
ible with the boundary conditions in the lateral direction
[4–6]. Consider a three-dimensional parameter space
sf ,L ,Dd and define in it a two-dimensionalmarginal stabil-
ity surfaceFsf ,L ,Dd=0. By definition, at any point on this
surface the growth rate of the longest perturbation is equal to
zero. The marginal stability surface represents a natural gen-
eralization of the spinodal line. Importantly, this definition
reduces to that of the spinodal line asD→` [see Ref.[6] and
Eq. (87) below]. The marginal stability surface can be com-
puted by linearizing Eq.(12) around the stripe state and solv-
ing the resulting linear eigenvalue problem. Calculations of
this kind were done previously for largeL far from the criti-
cal point [4–6]. Three typical cross sections of the marginal
stability surface are shown in Fig. 6. As expected, the insta-
bility region shrinks asD goes down. As a result, the critical
point moves toward smallerf ’s and largerL’s as D de-
creases. The monotonic dependence of the critical point po-
sition on D is explained by the monotonic increase of the
lateral heat conduction asD decreases.

The threshold value of the aspect ratioD*sL , fd has a
minimum at somef [4,6]. The respective minimum value
Dmin depends only onL. In this work, we performed a sys-
tematic investigation of this dependence. We found thatDmin
goes down monotonically as the parameterL−Lc is positive
and increases. Though this monotonic decrease looks like a
power law in the log-log plot, see Fig. 7(a), it is actually not.
Figure 7(b) shows the same dependence on a different scale.
Two different asymptotes are clearly seen. The first of them,
at L@1, was obtained previously:DminsLd=AL−1/2, where
A=52.14̄ [4,6]. In this regime, the eigenfunction of the
marginal stability problem is exponentially localized at the
elastic wallx=0. The second asymptote is valid close to the

critical point L=Lc, where Dmin diverges: Dmin
=42.085̄ sL−Lcd−1/2. This asymptote is derived analyti-
cally in the next subsection.

An additional interesting issue is the change of bifurcation
character, predicted by a weakly nonlinear analysis of the
steady-state problem close to the marginal stability surface.
At fixed L, the bifurcation is supercritical on an interval
f−sLd, f , f+sLd which lies within the spinodal interval
sf1, f2d. On the intervalsf1, f , f− and f+, f , f2, the bifur-
cation is subcritical[8,9]. The next subsection addresses the
finite-size effects in the vicinity of the critical point, where
everything can be calculated analytically.

B. Steady states and bifurcation types close to the critical
point

This subsection addresses two-dimensional steady states
in a laterally finite system close to the critical point. AsDmin
diverges at the critical point[see Eq.(90) below], we assume

FIG. 6. Cross sections of the marginal stability surface by three
planes:D=` (the solid line), D=1.788(the dash-dotted line), and
D=0.523 (the dotted line). The dashed lines show the dilute-limit
asymptotefL1/2=1.1997̄ , obtained analytically[6], and the spin-
odal and binodal asymptotics near the critical point.

FIG. 7. The dependence of the threshold value of the aspect
ratio D for the suppression of the phase separation on the parameter
L−Lc (a). The phase separation instability occurs when
D.DminsLd. (b) shows that the apparent “straight line” in(a) actu-
ally includes two different asymptotes and a crossover between
them. The two asymptotes are shown by the dashed lines: theL
@1 asymptote,DminsLd=52.14̄ L−1/2, and the asymptote near the
critical point, Dmin=psLcA4d1/2sL−Lcd−1/2, where A4=0.5213̄ .
The results of numerical marginal stability analysis are denoted by
circles.
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that D, though finite, is very large. The starting point here is
again Eq.(62), but on a finite interval −D /2øyøD /2, so we
replace the boundary conditions(67) by the no-flux condi-
tions

Udu

dy
U

y=−D/2
= Udu

dy
U

y=D/2
= 0. s77d

Periodic boundary conditions can be treated in a similar
manner. Integrating Eq.(62) over y from −D /2 to D /2 and
using the boundary conditions(77), we determinea and re-
write Eq. (62) as

A4
d2u

dy2 + ud − A3u
3 − kud − A3u

3l = 0, s78d

wherek¯l denotes spatial averaging,

k¯l =
1

D
E

−D/2

D/2

s¯ddy.

Introduce the rescaled coordinatey* =y/D, the order param-
eter u* =uD, and the control parameterd* =D2d. Equation
(78) keeps its form in the rescaled variables,

A4
d2u*

dy2 + u*d* − A3u*
3 − ku*ld* + A3ku*

3l = 0, s79d

while the boundary conditions become

du*

dy
sy* = − 1/2d =

du*

dy
sy* = 1/2d = 0. s80d

As the aspect ratioD drops out in these variables, a universal
description can be obtained.

Obviously, anyy-independent stateu* =const solves the
problem(79) and(80) (a y-independent state is nothing but a
stripe state). What is the condition for the appearance of
(weakly) y-dependent solutions? When ay-dependent solu-
tion does appear, what is the type of bifurcation? To address
these questions, we seek a weaklyy-dependent solution in
the form

u* = ku*l + a1 sinpy* + a2 cos 2py* + ¯ . s81d

We substitute Eq.(81) into Eq.(79) and treat the terms origi-
nating froma2 cos 2py* as small corrections. Expanding up
to Osa1

3d, we obtain the following two algebraic equations:

d* − p2A4 − 3A3ku*l2 −
3

4
A3a1

2 + 3A3ku*la2 = 0,

3

2
A3ku*la1

2 + sd* − 4p2A4 − 3A3ku*lda2 = 0. s82d

Putting herea1=a2=0, we obtain the marginal stability con-
dition

d* = 3A3u*
2 + p2A4, s83d

where we have omitted the spatial averaging ofu* , as it
becomes trivial on the marginal stability curve. The marginal
stability curve is shown as the thick solid line in Fig. 8. Now
we consider nonzero amplitudesa1 and a2 in Eq. (82) and

eliminate a2 in favor of a1. Above the marginal stability
curve (83), but close to it, we obtain the following equation
for the bifurcation curve:

d* − 3A3ku*l2 − p2A4

3A3
=

a1
2

4
S1 −

2A3ku*l2

p2A4
D . s84d

One can see that, on the marginal stability curve, the bifur-
cation is either supercritical(when the term in the parenthe-
ses on the right-hand side of this equation is positive) or
subcritical(when this term is negative). The change of char-
acter of the bifurcation occurs at the points

ku*l = ± Sp2A4

2A3
D1/2

= ± 3.116¯ , s85d

d* =
5

2
p2A4 . 12.86¯ , s86d

which lie on the marginal stability curve(83), see Fig. 8.
Note that the spinodal and binodal lines for an infinite

system can be expressed throughu* and d* :d* =3A3u*
2 and

d* =A3u*
2, respectively. This makes it possible to show all the

curves(the spinodal and binodal for an infinite system and
the marginal stability curve for a finite system) on the same
plot, see Fig. 8.

Going back from the rescaled variablesd* andu* to L and
a, we obtain for the marginal stability curve

L − Lc = A1sa − acd2 +
p2A4Lc

D2 , s87d

or, in the variablesf, L,

FIG. 8. The marginal stability curve for a laterally finite system
(the thick solid line) is shown together with the spinodal and bin-
odal lines for an infinite system(the thin solid line and the thin
dotted line, respectively). This is made possible by using the res-
caled order parameteru* and control parameterd* . The two black
circles show the points(85) and(86), where the bifurcation changes
its character from the supercritical(between the circles) to the sub-
critical (outside).
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L − Lc = A2sf − fcd2 +
p2A4Lc

D2 . s88d

The physical meaning of this result becomes transparent
when one compares it with Eq.(45) for the spinodal in the
infinite system.

Solving Eq.(88) for D, we can find the threshold value of
the aspect ratioD* at given f andL,

D* =
pA4

1/2Lc
1/2

fL − Lc − A2sf − fcd2g1/2. s89d

The phase separation instability occurs atD.D* . One can
see thatD* diverges on the spinodal line. The minimum
value ofD* at a givenL corresponds tof = fc,

Dmin =
pA4

1/2Lc
1/2

sL − Lcd1/2. s90d

This quantity diverges at the critical point, as the lower as-
ymptote in Fig. 7 shows.

Finally, the two points of change of the bifurcation char-
acter[Eqs.(85) and (86)] form a line,

L − Lc =
5

3
A1sa − acd2, s91d

in the planea, L, which corresponds to the line

L − Lc =
5

3
A2sf − fcd2 s92d

in the planef, L. This line lies within the spinodal interval of
the problem corresponding toD→`.

V. SUMMARY AND DISCUSSION

In this work, we have employed granular hydrostatics to
determine the phase diagram of a prototypical driven granu-
lar gas which exhibits spontaneous symmetry breaking and
van der Waals–like phase separation. We determined the
spinodal line and the critical point of the phase separation.
We computed the spinodal and binodal(coexistence) lines
close to the critical point. Effects of finite lateral size of the
confining box have been also addressed. These include de-
termining the line of change of the bifurcation character from
supercritical to subcritical.

The shape of the binodal(coexistence) line far from the
critical point is still unknown. To handle this problem within
the framework of the hydrostatic theory, one needs to solve
the nonlinear Poisson equation(12) in a laterally infinite box.
Most likely, this can only be done numerically, in a suffi-
ciently long box. It is clear, however, that the binodal line in
the variablessa,Ld is solely determined by the function
Qscd which encapsulates all the necessary information about
the equation of state, heat conductivity, and inelastic energy
loss.

It is worth mentioning that ourqualitative results (the
phase separation instability, the existence of the critical point
and spinodal and binodal lines, the suppression of the insta-
bility by the lateral heat conduction, and the change of bifur-

cation character) are robust and independent of the small
details of the constitutive relations. Furthermore, most of our
analytical results are presented in quite a general form which
only assumes a Navier-Stokes structure of the hydrodynamic
equations(in the limit of nearly elastic collisions). We used
the Enskog-type constitutive relations[11] only for comput-
ing numerical factors(and for the computations far from the
critical point). Obviously, the accuracy of our quantitative
results cannot be better than the accuracy of the Enskog-type
constitutive relations. Therefore, a 10–15 % error margin
should not be surprising.

There is an important additional aspect that can become
crucial when comparing the hydrodynamic theory with
molecular-dynamics simulations. As was already mentioned,
for the hydrodynamics to be quantitatively accurate, the
mean free path of the particles must be much less than any
hydrodynamic length scale. It is well known that, for a sys-
tem with a thermal wall, the leading correction to hydrody-
namics enters theboundary conditionin the form of a tem-
perature jump, proportional to the ratio of the mean free path
and the characteristic hydrodynamic length scale[18,19]. In-
deed, within the Knudsen layer, whose size is comparable to
the mean free path, hydrodynamics is inapplicable, while the
particle velocity distribution significantly deviates from
Maxwell distribution: the temperature of the incoming par-
ticles is less than that of the outgoing particles[as the out-
going particles have their normal velocity randomized ac-
cording to a Maxwell distribution with a(fixed) higher
temperature]. The effective temperature at the wall, for the
purpose of a hydrodynamic description in the bulk(that is,
outside the Knudsen layer), is always less thanT0 [18,19], as
is indeed observed in MD simulation of this system[2]. As a
result, the pressure of the system is reduced(notice that the
density does not change in this order; it can change only in
the next, Burnett order). The pressure reduction will obvi-
ously cause a shift of the critical point. For our numerical
results to be sufficiently accurate, the parameter«=d/Lx
must be very small, so that the mean free path is indeed
much less than the system dimensions. AsL,q«−2=const
(for example, at the critical pointL=Lc), a very small«
implies an extremely small inelasticityq. Despite the severe
limitation intrinsic to it, the nearly elastic case is conceptu-
ally important, just because hydrodynamics is supposed to
give here a quantitatively accurate leading-order theory.

An interesting direction for future work is the phase sepa-
ration dynamics. Here the hydrostatic equations should give
way to the full set of hydrodynamic equations. Close to the
critical point, however, a reduced description of the dynam-
ics should be possible. It has been suggested that such a
description is provided by the “van der Waals equation”
[7,10]. Though the van der Waals equation does capture
qualitatively much of the phenomenology of the phase sepa-
ration, as seen in the MD simulations[7,10], its systematic
derivation from the equations of granular hydrodynamics is
still lacking, and the coefficients of the normal form are yet
unknown. Importantly, our hydrostatic results close to the
critical point, encapsulated in Eq.(62), fully agree with those
predicted from the van der Waals normal equation. Further-
more, Eq.(62) provides quantitative relations between the
yet unknown coefficients of the van der Waals equation.
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Another avenue of future work requires going beyond hy-
drodynamic description, as it includes two types of fluctua-
tions in this system. The first of them was observed in
molecular-dynamics simulations inside the spinodal region at
L=11 050(that is, far from the critical point) in a wide re-
gion of aspect ratios around the finite-size threshold valueD*
[9]. It was found that these fluctuations dominate the dynam-
ics of the system, so they were called giant fluctuations. The
second type of fluctuations is expected to occur, by analogy
with the classical van der Waals phase transition, in a close
vicinity of the critical point. The fluctuations in these two
regimes should be describable in the framework of “fluctu-
ating hydrodynamics” of Landau and Lifshitz[19], general-
ized to granular gases in the limit of nearly elastic collisions.
Fluctuating hydrodynamics is a Langevin-type theory which
takes into account the discrete character of particles by add-
ing d-correlated noise terms in the momentum and energy
equations[19]. The fluctuations appear in this approach as a
hydrodynamic response of the system to the Langevin noise.
Unfortunately, this exciting direction of work is hindered by
the fact that the Langevin term, which accounts for the dis-
creteness of the inelastic energy loss in the energy equation,
has yet to be calculated[9].

Finally, it was assumed throughout the paper that the
granulate is driven by a thermal wall. In experiment, a rap-
idly vibrating wall is usually used. Though qualitatively
similar, the phase diagram of the case of a rapidly vibrating
wall can be quantitatively different[4,5,8].
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APPENDIX: COMPUTING THE COEFFICIENTS

Consider the stripe solutionCsx,a,Ld. The expansions in
the vicinity of the critical point, used throughout the paper,
include several derivatives of this function which need to be
evaluated. These areC8, Ca, Caa, CL, CLa, Caaa, and the
additional functionF [see Eqs.(58) and (59)], all of them

evaluated at the critical pointa=ac, L=Lc. One can easily
show that each of these functions is a solution of the linear
problem

w9sxd − LcQcsCcdwsxd = Ssxd sA1d

with different source termsSsxd and different initial condi-
tions at x=0. The source terms and initial conditions are
listed in Table I.

Let us show, as an example, the derivation ofSsxd and of
the initial conditions for two of the functions:Ca andCLa.
The starting point is Eq.(15) with the initial conditions(16)
and (18) for the stripe solutionCsx,a,Ld. The stripe solu-
tion depends ona andL because they enter either the equa-
tion or the initial conditions. Let us differentiate both sides of
Eq. (15) with respect toa. We obtain

Ca9sx,a,Ld − LUdQ

dc
U

c=Csx,a,Ld
Casx,a,Ld = 0. sA2d

OnceCsx,a,Ld is known, Eq.(A2) is a linear differential
equation forCa. Now let us differentiate, with respect toa,
Eqs.(16) and (18). We obtain the relations

Cas0,a,Ld = 1 and Ca8s0,a,Ld = 0, sA3d

which serve as the initial conditions for the same function
Ca. As we see, the source termSsxd vanishes in this case.

Differentiating Eqs.(A2) and (A3) with respect toL, we
arrive at the following problem for the functionCaL:

CaL9 sx,a,Ld − LUdQ

dc
U

c=Csx,a,Ld
CaLsx,a,Ld

= UdQ

dc
U

c=Csx,a,Ld
Casx,a,Ld

+ LUd2Q

dc2U
c=Csx,a,Ld

CLsx,a,LdCasx,a,Ld, sA4d

TABLE I. The source termsSsxd and the initial conditions atx=0 for Eq.(A1), for each of the auxiliary
functions shown in the first column. The functions in the first and second columns have the same arguments.

wsxd Ssxd

Initial conditions atx=0

ws0d w8s0d

C8sx,ac,Lcd 0 0 LcQsacd
Casx,ac,Ccd 0 1 0

CLsx,ac,Lcd QsCcd 0 0

Caasx,ac,Lcd LcQccsCcdCa
2 0 0

CLasx,ac,Lcd LcQccsCcdCLCa+QcsCcdCa 0 0

Caaasx,ac,Lcd 3LcQccsCcdCaCaa+LcQcccsCcdCa
3 0 0

Fsx,ac,Lcd −Ca 0 0
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CaLs0,a,Ld = 0, sA5d

CaL8 s0,a,Ld = 0. sA6d

Again, onceC, Ca, andCL are known, Eq.(A4) is a linear
equation forCaL. Here the source term is nonzero, while the
initial conditions(A5) and(A6) are zero. Substituting in Eqs.
(A2)–(A6) a=ac andL=Lc, we obtain the second and fourth
rows of Table I. The other rows of Table I can be obtained in
a similar way.

The functionsC8sx,ac,Lcd andCasx,ac,Lcd are special,
as they satisfy the homogeneous form of Eq.(A1): Ssxd=0.
Therefore, once they are found, the rest of the functions from
Table I can be expressed through them,

wsxd =
1

LcQsacd
FC8sxdE

0

x

CasjdSsjddj

− CasxdE
0

x

C8sjdSsjddjG + C1Casxd + C2C8sxd,

sA7d

whereC1 andC2 are integration constants. To satisfy the zero
initial conditions atx=0, we must chooseC1=C2=0 in all
cases. Furthermore, evaluatingwsxd at the thermal wall
x=1, we observe that the term proportional toCasxd in Eq.
sA7d vanishes, asCas1d=0 at the critical point. Therefore,
for all functions from Table I exceptC8 andCa, we obtain

ws1,ac,Lcd =
C8s1d

LcQsacd
E

0

1

CasjdSsjddj. sA8d
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