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Phase diagram of van der Waals—like phase separation in a driven granular gas
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Equations of granular hydrostatics are used to compute the phase diagram of the recently discovered van der
Waals—like phase separation in a driven granular gas. The model two-dimensional system consists of smooth
hard disks in a rectangular box, colliding inelastically with each other and driven by a “thermal” wall at zero
gravity. The spinodal line and the critical point of the phase separation are determined. Close to the critical
point, the spinodal and binodétoexistencglines are determined analytically. Effects of the finite size of the
confining box in the direction parallel to the thermal wall are investigated. These include suppression of the
phase separation by heat conduction in the lateral direction and a change from supercritical to subcritical

bifurcation.
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[. INTRODUCTION parameters introduced below: the area fraction of the par-

Granular gasesgases of inelastically colliding macro- ticlesf, the aspect ratio of the boX, and the effective hy-
scopic particiesexhibit a plethora of symmetry-breaking in- drodynamic inelastic heat loss parametef4,6]. By solving
stabilities and clustering phenomefid. Their investigation ~the hydrostatic equations numerically, we obtain, in Sec. Il
is useful both for testing and improving the models of granuihe spinodal line and the critical point of the phase separation
lar flow, and for a deeper understanding of far-from-in the limit of A—c. Sec. Ill deals with the same limit of
equilibrium dynamics in general. In this work, we focus our A—o but, in addition, assumes a close proximity to the
attention on a recently discovered phase separation instabigritical point. Here we find the spinodal and binodebex-
ity which occurs in a prototypical two-dimensional granularistence lines analytically and determine the structure of the
system: an assembly of monodisperse hard disks in a bosfeady-state domain wall, separating the more dense and less
colliding inelastically with each other and driven, at zerodense stripes in the lateral direction. Effects of finite aspect
gravity, by a rapidly vibrating or thermal wall. An immediate ratio A are addressed in Sec. IV. These include suppression
consequence of the inelasticity of the particle collisions is thedf the phase separation by heat conduction in the lateral di-
formation of a laterally uniform clustethe stripe stateat  rection and a change from supercritical to subcritical bifur-
the wall opposite to the driving wall2,3]. Both granular cation. Sec. V includes a brief discussion of the results and
hydrodynamics and direct molecular-dynamics simulationgroposes directions of future work.
show that this simple clustering state can exhibit spontane-
ous symmetry-breaking instability leading to phase separa-
tion: coexistence of dense and dilute regions of the granulate
(droplets and bubbleslong the wall opposite to the driving
wall [4-10. This far-from-equilibrium phase separation is In this section, we formulate the model, briefly review the
strikingly similar to the gas-liquid transition in the classical stripe state, and compute the spinodal line and the critical
van der Waals model. The objective of this work is a systemypoint of the phase separation for a laterally infinite system,
atic investigation of the steady states in this system and com\ — oo,
putation of the phase diagram starting from the Navier-
Stokes granular hydrodynamics. Granular hydrodynamics is
expected to be an accurate leading-order theory when the
mean free path of the particles is much less than a character- Consider an assembly of inelastically colliding hard disks
istic inhomogeneity scale of the problem, and the mean tim@f diameterd and massn=1, moving in a box with dimen-
between two consecutive collisions of a particle is much lessions L, XL, at zero gravity. Collisions of disks with the
than any time scale the hydrodynamics attempts to describaalls x=0 andy=+L,/2 are assumed elastic. Alternatively,
In addition, we should work with sufficiently low particle periodic boundary conditions in the direction can be im-
densities, when an account of binary collisions and volumeposed. We refer to thg direction as the lateral direction of
exclusion effects is sufficierfiL1]. As will be shown below the system. In a laterally infinite syster,—cc. The par-
(see also Ref2]), the requirement that the mean free path beticles are driven by a “thermal” wall: a constant granular
small compared to the inhomogeneity scale implies in thigdemperaturel, is prescribed ak=L,. The inelasticity of the
system that particle collisions must be nearly elastic. particle collisions is parametrized by a constant normal res-

For steady states with a zero mean flow, granular hydrotitution coefficientr; we will work in the nearly elastic limit
dynamic equations reduce to granubdrostatics see Sec. 1-r><1. We also assume a moderate number density
Il. The hydrostatic problem is fully described by three scaledn/n.<0.5, wheren.=2/(y3d?) is the hexagonal close pack-

1. HYDROSTATICS OF PHASE SEPARATION: MODEL
AND GENERAL RESULTS

A. Model
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ing density. The last two assumptions allow us to employ the
Navier-Stokes granular hydrodynamics. Throughout this
work, we will use for concrete calculations the constitutive
relations suggested by Jenkins and Richrfil. These re-
lations were derived by analogy with those obtained in the
framework of a successful but still empiric Enskog theory
[12]. Detailed comparisons with molecular-dynam{@4D)
simulations show that the error margin of the Enskog heat
conductivity can reach as much as 10-1BPg]. Still, these
relations seem to be the best available constitutive relations
for moderate densities. Importantly, most of the analytical
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B)=1+2G+ —=——— L
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results in this work are written in a more general form, which 6 72g
only assumes a Navier-Stokes structure of hydrodynamic Q2 =— 373
equations. The Jenkins-Richman’s relations are used only for (1+2G)
computing numerical factors.

Energy input at the thermal wall balances the energy loss T
due to interparticle collisions, so we assume that the system - Z= 32_\5
reaches a steady state with a zero mean flow. Therefore, the G=—F=7"7"—"3- (4)
full hydrodynamic equations reduce to hydrostatic equations, 23 (z— l_)

2V3
p=const andV -(«kVT)=I, 1)
The parameter

wherep is the granular pressur&,is the granular tempera- )
ture, x is the thermal conductivity, anidis the rate of energy A= 2_7’(1 _ r)(ﬁ) (5)
loss by collisions. Notice that we did not account, in the 3 d/’

second of Eqgs(l), for an additionakinelastig contribution
to the heat flux which is proportional to tliensitygradient.
For a dilute gas, this term was derived in Rgf4]. It can be

which appears on the right-hand side of E8), is the hy-
drodynamic inelastic heat loss parameter. Notice that it can

neglected in the nearly elastic limit which is assumedP€ made arbitrarily largéby taking large enough,/d), no

throughout this paper.

The constitutive relations entering Eq4.) include the
equation of stateo=p(n,T) and expressions fok and| in
terms ofn and T. In our notation, these relations can be
written as[11]

p=nT(1+2G'),
2dnT1’ZG'[ 977( 2 )2]
K= |1+ —|1+—] |,

Jar 16\ 3G’

- 8(1 -r)nT%G’

=
Vard

vl1l-—
16

(1-v? "

G = 2

where v=n(md?/4) is the solid fraction. Let us rescale the
coordinates by ,: r/L,—r. In the rescaled coordinates, the
box dimensions becomeXlA, whereA=L,/L, is the aspect

ratio of the box. Introducing a normalized inverse density

z(x,y)=n./n(x,y) and eliminating the temperature, one can
rewrite Egs.(1) as a single equation fa(x,y) [2,4,6,

V- [F(2Vz]=AQ(2), )

whereF(z)=A(z)B(2),

matter how small the inelasticity=(1-r)/2 is.

Now we specify the boundary conditions for E@). At
the elastic wallsx=0 andy=+A/2, the normal component
of the heat flux must vanish. In terms of the inverse density
z, one hasv,z=0 at these three walls. Here, indexdenotes
the gradient component normal to the wall. Alternatively, for
the periodic boundary conditions we should dematidy
+2m7/A)=2z(x,y). The constant temperature at the thermal
wall x=1 vyields the simple condition

z(x=1,y) = const (6)

with an a priori unknown constant. As the total number of
particlesN is fixed, the normalization condition

1 rA2
1 f f dxdy iy o
Ao Joap 2XY)
should be imposed, where=(n)/n. is the area fraction of
the grains andn)=N/(L,L,) is the average number density
of the grains.

Equation (3) with the boundary conditions at the four
walls and Eq.(7) make a complete set. Notice that the
steady-statalensity distribution is independent of the wall
temperaturel [4]. The wall temperature only sets the scale
of the temperatureprofile in the system, and affects the
steady-statg@ressure The governing parameters of the sys-
tem are the scaled numbess f, andA. For a laterally infi-
nite systemA — o, only two governing parameters and f
remain in the hydrostatic formulation.

Let us define the scaled temperatﬁFeT/To and pressure
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FIG. 1. The effective heat flux potentig vs the inverse scaled

. . ) FIG. 2. The effective heat loss functi hich appears on
densityz. The inset shows a blowup of the region okx<4. v uncti@(y) wh PP

the right-hand side of Eq12).

B= p ='~I'H(z) (8) Importantly,Q(¢) decreases with an increaseyoft large
neTo ’ enoughy. [In the dilute limit, > 1, one hasQ(y) o« 3]
where This implies nonuniqueness of the steady-state solutions of
Eqg. (12) [15], and opens the way to phase separation and
1+2G(2) coexistence.
H@=———— 9
z
Once the steady-state density profile and {o@iform) B. Stripe states, spinodal line, and critical point
steady-state pressuie are found, Eq.(8) determines the  The simplest steady state of the system is the “stripe,” a
steady-state temperature profiléx,y). laterally uniform state which corresponds to the

The vector fieldF(z) Vz entering Eq(3) is, up to a sign, y-independent solutiore=Z(x) [2] or ¢=V(x). It is de-
the scaled heat flux. Equatioi3) becomes simpler if we scribed by the equation
introduce, as a new variable, the scalar potential of the heat .
flux: =[*F(z')dZ. To avoid a divergence of the integral at P =AQ(Y), (15
infinity, we account for the diverging part directly, by ex- with the boundary condition
tracting the first two terms of expansion Bfz) at z— o,

_ v'(0)=0 (16)
V3 1o TT i it iti
F(2) = L f(2). (10)  and the normalization condition
1

The integral off(z) already converges at infinity, and we f dx =f. (17)

obtain 0 Z[¥(X)]
1 T * Here and in the following, the primes denote theleriva-

— 32, ~ " 1/2 _ . . . . .

2 = \623 T 327 L f(z)dz. (11 tives. As Eq(15) does not include the first derivativé’ (x),

it has an “energy” integral and therefore is integrable. A
The potentiaky grows monotonically witlz, see Fig. 1. Now numerical solution, however, is more practical. Figure 3
Eq. (3) becomes a nonlinear Poisson equafi®f gives an example of the density proIiIe of the stripe state in
2, _ terms of the scaled density¥x)/n.=Z"*(x) and the auxiliary
V= AQW), (12) functions W(x) and Z(x) for A=344.2 andf=0.095, corre-
where byQ(¢) we actually mearQ[z()] here and in the sponding to the critical point of the phase separaiisee
following. The functionQ(¥) is depicted in Fig. 2. We will  below).
be dealing with Eq(12) throughout the paper. The boundary  The stripe state problerfi5—17) can be recast into a
conditions for¢(x,y) are identical to the boundary condi- more convenient initial value problem if we use, instead of

tions for z(x,y), the normalization conditio17), a boundary condition
apxy) | _ 0 13 V(0)=a. (18)
X Ix=0 Indeed, the initial value problem defined by E¢s5), (16),

B and(18) has a unique solutio®¥’(x,a,A). Having found it,
(1) = const, (14 one can calculate the area fractibmf(a, A) from Eq.(17).
supplemented by either no-flux or periodic boundary condilmportantly, for the Enskog-type constitutive relatio@,

tion at the wallsy=+A/2. Note thatz is assumed to be f(a,A) turns out to be a monotonic function af for any
expressed througly in Eq. (7). fixed A. This enables one to use the pair of numbers\)
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FIG. 3. Spatial profiles of the stripe state far=344.2 andf
=0.095, which are the critical values Afandf for the constitutive
relations(4). Shown in the main part of the figure is the scaled
densityn(x)/n.=Z"%(x). The inset showg(x) (the solid ling and
the heat flux potential’(x) (the dashed ling obtained by solving
Egs.(15—17).

instead of(f, A) for the parametrization of all possible stripe
states. The parametrizatida, A) will be often used in the
following.

In a wide region of the parameter spadeA,A), the

stripe state undergoes a phase separation instability and gives

way to a laterally asymmetric stafé—10. The instability is

driven by negative compressibility of the stripe state in the

lateral direction[6,7], resulting from energy loss in particle

collisions. LetP=TII(Z) be the scaled steady-state gas pres
sure of the stripe state. In the limit @& — <, the spinodal
region in the (f,A) plane is defined by the condition
(aP1of),<0. As P is constant in space, it can be conve-
niently computed at the thermal wait 1 [6]. HereT=1 and
therefore

P=P(a,A) = H[Z()]| jmwaan)- (19

Alternatively,
_1+2G[Z(f,A)]
(W V.

whereZ;=Z(x=1). The spinodal line of the phase separation
(again, in the limit ofA — ) is determined by the condition

dP(f,A)
af

Solving Egs(15)—(18), we computed from Eq20) the P(f)
curves at differenf\, see Fig. 4a). These computations yield

a critical point (f;,P.) [equivalently, (f.,A.), or (as,AJ)].
For A<A,, the pressurd® increases monotonically with

P(f,A) (20)

0. (21)
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FIG. 4. The spinodal linéthe solid ling and theP(f) curves for
the stripe state, foh =5x 10° and A =280 (the dashed and dash-
dotted lines, respectivelya). The two dotted straight lines are the
dilute-limit asymptote®;(A,f)=f andP,(A,f)=f/2 (a). (b) shows
the P(f) curve for A=5%10° in a different scale, to make the
region of negative compressibilityP/df<0 more visible.

odal line, respectivelysee the next subsectipriFigure 4b)
shows, on a different scale, th&f) dependence for a fixed
A within the spinodal region, to make the region of negative
lateral compressibility more visible. Figure 5 depicts a part
of the spinodal line, together with the asymptotics of the
spinodal and binodgtoexistencglines in the vicinity of the
critical point, found analytically in Sec. IlI.

Now let us again use tha parametrization of the stripe
solution. Equatior(21) for the spinodal line is equivalent to

dP(a,A) 0

Ja (22

The critical point is the merging point of the maximum and

(as in an elastic gasso there is no phase separation insta-minimum points of theP(f) [or P(a)] curve at differentA.

bility. For A> A, the pressuré® versusf has a nonmono-
tonic part. The maximum and minimum points Bff) at
different A yield the spinodal line. This line in théf,P)
plane is shown by the solid curve in Fig@at Figure 4a)

also shows two straight lines. These are the dilute-limit as-

ymptotes ofP(f) and of the low-density branch of the spin-

Therefore, the critical point is defined by the following two
conditions:

dP(a,A)
da

(2 Ao =0, (23
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0.036 binodal fo=f(as,Ag) =0.0950..., (30

asymptotics

P.=P(a, Ao =0.0373... . (31

We checked that the maximum density of the stripe states,
corresponding to the spinodal shown in Figayis less than
0.5n,, which is within the assumed validity domain of the
constitutive relationg4). At the critical point itself, the maxi-
mum scaled density of the stripe statenix=0,a;,A.)/n;
=1/Z(x=0,a;,A.)=0.2086..., a moderate value.

a, 0.035f

003l aomotatics The critical point, predicted by the Enskog-type granular

0.03 0.095 011 hydrodynamics, agrees fairly well with molecular-dynamics
(a) f simulations by Sotet al. [7,10. The issues of accuracy of
the hydrodynamic results are discussed in Sec. V.

spinodal C. Dilute-gas limit

1
‘.« asymptotics

2r 1 . - .
35 : In the dilute-gas limit,Z>1, we can obtain the two

, straight-line asymptotes shown in Fig(at of the stripe
pressureP(f,A) and of the low-density branch of the spin-
odal line. Here the stripe state equation is
d2 3/2 1/2

—Z2°°=372""7, 32
&7 32
where_ a different rescaling of the coordinate is introduced:
Xx=xvA. (Notice that in the physical coordinatg,,s the new
rescaling does not include,.) The boundary conditions are

binodal
asymptotics

348

344}

0.09 0.095 0.1
(b) f

dz
FIG. 5. The spinodal lingthe solid ling and the spinodal and Z(x=0)=Z, and —(x=0)=0,
binodal asymptotics close to the critical poithie dashed lingsn dx
the variablesf, P (a) andf, A (b). whereZ, is related tof andA by the normalization condition
[} 2 *dx=fAY2 The solution to this problem ig6]
#P(a,A)

(A =0. (24) X= %(arccoshf'z +VE-0), (33)

For an assembly of hard spheres below the freezing point _
one has(dp/dn);>0, which follows (dP/d2)|,-7q #0. Where¢=z/Zoand

Therefore, Eq(22) for the spinodal line is equivalent to . ANY2 »
aV(1,a,A) 0 25 07 2fAY2+ sinh(2fAY?) (39
oa 1 In the dimensional units, the density profi@3) is deter-

mined by a single parametef=fAY2 The scaled pressure

while Egs.(23) and(24) for the critical point can be rewrit-
4s.(23) 29 P of the stripe state is

ten as
PG 1 2£+sinh(29)
v - P=—=—>_— "> 35
o (L34 =0, (26) Z, " 2 cosht £ (35
5 where Z,=Z(x=1)=Z, coslt £&. Assumingé<1, we obtain
ﬂ(l,ac,Ac) =0 (27) from Eq. (35) the dilute-limit asymptotd>(f,A)=f.
da? The low-density asymptote of the spinodal is determined

(recall that the first argument of functioh and of its deriva- from the condition

tives stands foix). Solving Egs.(15), (16), (18), (26), and <(9p) 1/2( ,9p)
=A =0.
A A

(27) numerically, we find the critical point

of o€
3:=6.580..., (28) This equation, together with E@35), yields cotlié)=¢ [6].
_ Substituting this result back into Eq35), we obtain
A.=344.2.... (29 P(f,A)=f/2.
Using Eqgs.(17) and (20), we find the critical point in the Using the dilute-limit Eqs(33) and (34), one can verify
variablesf, P, that validity of granular hydrodynamics as an accurate
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leading-order theory in this problem indeed demands nearlywhere an order parametera/a.—1 and a control param-
elastic collisions(see also Ref[2]). Equation(33) implies  eter §=A/A.—1 have been introduced.

that the inverse scaled densifyx) can be presented a5 To obtain the equation of the spinodal line, we differenti-
=Z,F(x1Z,), where functionF does not include any addi- ate Eq.(37) with respect toa, put x=1, and use Egs.
tional parameters. Therefore, the characteristic scale of inhd25—27). The result is

mogeneity of the stripe state in tlalirection in the rescaled 2

coordinatex is of the order oZ,. Going back to the physical S=-— Mu{ (38)
coordinate x=AY2x,,. o L~ qY2x,n,d/ d, we see that the in- 2AWan (1,85, A¢)

homogeneity scale is of the order B§d/gq'?>~ (n,dg'? ™.

For hydrodynamics to be valid, this quantity should be much

greater than the characteristic mean free path of the particles A-A.=A(a-ay)?, (39

|, which is of the order ofnyd) ™. Therefore, the validity of where
hydrodynamics in this system requirg¥?>< 1, quite a strin-

gent condition. An additional discussion of this condition is _ YaadlasAo)
. Al=-—— . (40
presented in Sec. V. 2V, (1,a.,A)
Ill. SPINODAL AND BINODAL LINES IN THE VICINITY One can see from Eq38) that, close to the critical point,
OF THE CRITICAL POINT 5=0(u?). That is why we could neglect the term proportional

to W, ,6°=0(u* in Eq. (37).
The coefficientsV,,(1,a;,A;) andWV,,(1,a;,A,) can be

In the vicinity of the critical pointa;, A; (at A>A,), the computed numerically, see the Appendix,
two-dimensional, phase separated state is very close to the

A. Mathematical preliminaries

one-dimensional stripe state. Therefore, the spindal and bin- V.aa(l,a,,Ac) =0.024 34 - - (41
odal lines can be obtained by expandig(x,y) around the
stripe-state solutiont'(x,a,A) in the power series ch—a, ¥\ (1,a,A) = —0.001 926, (42)

and A—A.. For brevity of notation, the subscriptsand A
will denote the partial derivatives/da and 9/dA, respec- SOA1=6.317--. o _
tively, while the prime will stand for the partial derivative _ Equation(39) can be rewritten in terms of andf. Using
gl 3x as before. As will become clear shortly, the following Ed- (17), we expandZ(x,a,A) near the critical stripe solu-
functions ofx at the critical point need to be computed:  tion Z(X) =Z(x,ac, A¢) up to the first order ira-a; (which
suffices close to the critical poinénd obtain
WLW,, W, Wy, W, and W,

As the stripe solution¥(x,a,A) is available in quadrature, f-fe=f@nAd@-a), 43
the derivatives of¥’ with respect to parametessandA are ~ where

known. More practical, however, is a different approach. As 1

shown in the Appendix, all these functiofand an additional f(agAg) = _f _YaxauAd (44)
function ®(x) that we will need, see E@60) below] can be 0 [ZXPF[Z(x)]

expressed as solutions of the linear differential equation,

Evaluating this integral numerically, we obtafg(a.,A¢)=
W(X) = AQu[W(x,a,Ag)] W(X) = S(x) (36)  —0.004 396 -. As a result, Eq(39) can be rewritten as
with different source term§(x) and different boundary con- A-Ag=Al(f -2, (45)

ditions. For the first derivatived¥’ and¥,, the source term
vanishes. Therefore, the rest of the functions can be exwhere

pressed throug?’ and¥,, see the Appendix. A, =Af(a,Al)]?=3.268 -+ X 10°. (46)

B. Spinodal line in the vicinity of the critical point Now we compute the spinodal line in thieP plane. Ex-

It follows from Eqgs.(26) and (27) that the first nonvan- panding Eq(19) in the vicinity of z=7(1,a.,A,), we obtain
ishing term in the expansion oF(x,a,A) in the powers of B ©
a-a, at the critical point is the cubic terfa—a.)3. There- P=Pe+ 11, Wi(Lag Ad(A = Ad + -+, (47)
fore, we should keep the following terms in the expansion: where the higher-order terms are negligible, and

V(x,a,A) =V(X,a,A) + AW (X,a,A)S 1 dIl
2 = (——) =-2.969 - X 107*.
& 2 F(2) dz/ | = wa ng)
+aVa(X,aqAJu+ E\Ifaa(x,ac,/\c)u ace
(48
3
+a AW (Xa, AJus+ %\Ifaaa(x,ac,AC)ue', The negative value ofl'” is a consequence of our defini-

tions ofz and ¢ and of the conditior{gp/én);>0. Combin-
(37) ing Egs.(47) and(45), we obtain

051310-6
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P-P.=-Ag(f-1)? (49)

where A5:—A2\I’A(1,aC,AC)H(°). A numerical calculation
(see the AppendixgivesWV,(1,a;,A;)=0.2203--, therefore
As=21.38--. The spinodal asymptotic&49) and (45) are
shown, together with the full spinodal line, in Figgapand
5(b), respectively.

C. Two-phase coexistence and binodal line in the vicinity
of the critical point

1. Laterally nonuniform states

For a steady state with a broken lateral symmetry, the
function (x,y) depends on its two arguments. In a laterally

infinite system, the asymptotics @fix,y) aty— +o corre-

spond to two different stripe states. Therefore, it is natural to
replace the no-flux or periodic boundary conditions in the

lateral direction by the condition

PXy — ) = yu(X), (50

where ¢_(x) # ¢,.(x). One way to solve the problem, is de-
termined by Eqgs(12)—(14). and Eq.(50), is to introduce an
unknown functiona(y) so that

#(0,y) =a(y),

a(y — o) =a, =const (51)

with a_# a,. What equation should(y) satisfy close to the
critical point? Here we can look faf(x,y) in the form of a
weakly and slowly modulated stripe state,

P(xy) =V[xaly),Al+ d(xy), (52)
wherea(y)=aJ1+u(y)] is a slow function ofy, ¢(x,y) is a

small correction toW, and ay-dependent order parameter

PHYSICAL REVIEW E 70, 051310(2004)

_ d’u(y)
d(xy) = ad(x) a2 (57)
The function®(x) is the solution of the following problem:
D" = AQU Y (X)]P =-V,(x,a.,Ao), (58)
d(0)=d’'(0)=0, (59)

which again belongs to the class of equati¢86). The so-
lution (see the Appendixis

d(x) = Ya(X,a,A0) f V' dé
0

|
AQ(ay)

— W' (X8, Ac) f ‘Pﬁdf] (60)
0

where the functionsV’ and ¥, under the integrals ovef
have argumentg,a., andA.. Now we impose the boundary
condition(55),

v(l,a,A) + (I)(l)d—zu =const
A4 ac dy2 - .
As the second term on the right side of EB5) is of order
ué, we should keep terms up to® in the expansion of
V¥ (x,a,A) near the critical poing, A;. This expansion has
the same form as Eq37), with the only difference being
that nowu depends ory. Evaluating this expansion at=1
and using the definitions of the critical poifigs.(26) and
(27)], we arrive at the desired equation fafy),

(61)

u(y)<1is introduced. We will see shortly that the character-where

istic length scale of(y) (the domain-wall width is of the

order of 5¥2~u1, while ¢~ u®. Hence, every derivative
introduces smallness of order Making the ansatz52) in

Eq. (12) and neglecting terms of a higher order thaih we
arrive at the following linear problem fag(x,y):

d?u

Fep = AQUVcX)]= - aWa(X,ap Ad) -

a2’ (53)

The first boundary condition in Eg54) elmiminates the ar-
bitrariness in the choice of(x,y), while the second one
follows from Eqgs.(13) and(16). Additional boundary condi-
tions include

¥(l,a,A)+ ¢(1,y) =const (55)
at the thermal wal[see Eq(14)], and
d(x,y — ) =0 (56)

[see Eq.(50)]. Notice, however, that Eq$55) and (56) do
not enter the probleng53) and (54) eliminate for ¢(x,y).
Equation(53) can be solved by a separation of variables,

US— A+ A du_ - const (62
—_ — s == ’
3 4dy2
2 2
Wona 1,2, A A
3= — acVaad1,8c,Ao) & 1-0.26485--, (63
6Ac‘PaA(1iaC'AC) 3AC
d(1
A (1) =0.5212 -, (64)

T Ao (1,a0A0)
and[see Eq(60)]

1

V(1,80 A
—MJ W2dx=-0.3457-. (65)
0

0= "1 Q)

2. Domain wall and the binodal line
One integration of Eq(62) yields

A4<d—u>2—&(u2—ﬁ>2+2 u+pB
dy/ ~ 2 A, ST

where 8=const. To find the constantsand 3, we are using

(66)

the boundary conditions in the lateral direction. In an infinite

system, these are
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(67)

with u_# u,. Equations(66) and (67) appear in numerous
problems of domain-wall structure; see, for example, Ref
[16]. The boundary condition$67) yield a=8=0, so the
domain-wall solution is

u=+\/Etanf{\/i(y—y)}
"N A 2a,” V)

u(y — ) =u, =const

(68)

where = refers to two possible orientations, and the arbitrary

constanty, describes the position of the domain wall. The
domain-wall solution exists only i5>0, that is, A>A..

Equation(68) confirms our assumption that the characteristic

width of the domain wall isO(657*?). Returning for a mo-

ment to the physicalunscaleg variables, we see that the
domain-wall width isO(L,/ 6*?), which is much larger than
Lx

PHYSICAL REVIEW E7Q, 051310(2004)

selves of the van der Waals equations have not been derived

yet) In addition, Sotoet al. [10] reported a binodal line
found in molecular-dynamics simulations of this system for a
moderate value of the parameterd/L,=0.01. See Sec. V
for a discussion of the role of this parameter.

Soto et al. [10] also suggested an interpretation of the
binodal line in terms of “Maxwell’s construction.” By anal-
ogy with the classical van der Waals ggls7], Maxwell’s
construction can be written as

fa _
J P(f,A) P(fl’A)df:
f

f2
where the factof? in the denominator comes from the equal-
ity dv=d(1/f)=—df/f? whereV=1/f is the(scaled specific
volume. How does Eq.73) compare to our resu{72)? Con-
sider expressionl9) for P(a,A). Close to the critical point,

0, (73

1

The values of the order parameter far from the domaint can be expanded in the powerswand,

wall are P=Pe+ APyS+aAPpUS+ 2P 3+ -, (T4)
&g, | o 69 where all the derivatives oP are evaluated at the critical
Us = a. T A’ (69) point. Going over fromu to f-f;, one obtains
Equation (69), rewritten in terms ofa and A, defines the _ AcPand . Paaa e 3, .
binodal (coexistencgline, P=Pot AcPyo+ f, (f=fo) + 6 (F=fo)+ -,
A (75
A-A=Z(a-ay)?, (70) _ o
3 where the numerical coefficie is given by Eq.(44), and
or, in terms off and A, the dots stand for terms of _the order(6ff.)* a_nc_i hig_her. At
6>0 (when phase separation ocouthe coefficient in front
A-A = &(f )2 (71) of f—f. is negative, while that in front off —f.)® is positive.
¢ 3 ¢ Note also that, in the vicinity of the critical poin§=0O(f

-f.)% Now we substitute Eq(75), with the higher-order
terms neglected, into Eq73). In this order of perturbation
theory, one should put=f. in the denominator of the inte-
grand. As a result, Eq.73) reduces to the simple relation
(f,+f,)/2=f. obtained above. Of course, the reason for this
agreement is the closeness to the critical point. In this sense,
Maxwell’s construction(73) does not give anything new.
Moreover, manydifferentconstructions, for example

Compare these expressions with E¢29) and (45) for the
spinodal.

The binodal line can also be expressed in term$ aihd
P. The derivation almost coincides with that for the spinodal
line, see the end of Sec. Ill B. The only difference is that
now we substitute into Eq47) the binodal relation(71)
rather than the spinodal relatigd5). The result is

A
P—Pc:—f(f—fc)z. (72)

f2
f [P(f,A) = P(f1,A)]df=0, (76)
f1

The physical meaning of the binodal asymptoti¢8) and . . L i .
(71) is straightforward. First, the two coexisting stripes with aré equally applicable in the vicinity of the critical point. Of
f=f, andf=f, have equal pressureB(f,)=P(f,). Secondly, ~COUrse, Maxwell’'s construction would be valuable if it were

close to the critical pointf,; and f, are symmetric with re- _shown to be trudar f_rom th(_e c.ritical point. At present, there_
spect tof,, that is, (f,+f,)/2=f,. The binodal asymptotics IS NO reason to believe this is the case, and the theoretical

(72) and (71) are depicted in Figs.(8 and 3b), respec- form of the binodal line far from the critical point remains
tively. unknown.

Note that our results for the spinodal and binodal lines
[see Egs(45) and(71)] are consistent with the results ob- V. FINITE SIZE EFFECTS: MARGINAL STABILITY AND
tained by Sotcet al. [7,10 in the framework of their phe- BIFURCATIONS
nomenological “van der Waals equation.” Indeed, our Egs.
(45) and(71) have the same quadratic forms as those obtain-
able from the van der Waals equatifn10]. Furthermore, The results presented in Secs. Il and Ill are valid in the
the ratio of the coefficients of the spinodal and binodal linedimit of A—c. Already in the first papef4] on the phase
(45) and(71) equals 3, in agreement with what the van derseparation instability, it was found that the instability, is sup-
Waals equation predictgNote that the coefficients them- pressed when the aspect ratio of the hbxL,/L, is less

A. Marginal stability surface

051310-8



PHASE DIAGRAM OF van der WALLS-LIKE PHASE. PHYSICAL REVIEW E 70, 051310(2004

0.06 binodal 10° °
asymptotics \.,: 2 °o°
a s N o
10* "o
0.04 s 1 %,
g //' E °°o
[ / LT 2 o
< 2 P spinodal <10 °
0.02 Y ",."' /f' asymptotics | .
I 10° 0
0 ; —2 . %
0 0.196 0.12 1010 2 0" < 0"
(a) A—AC
FIG. 6. Cross sections of the marginal stability surface by three
planes:A=c (the solid ling, A=1.788(the dash-dotted line and
A=0.523(the dotted ling The dashed lines show the dilute-limt | ... oo
asymptotef A12=1.1997--, obtained analyticall§6], and the spin- o
odal and binodal asymptotics near the critical point. 'ESO- °
< °
than a threshold valua.(f,A). The physical mechanism of «Q °
suppression is heat conduction in the lateral direction, which ) °
tends to erase the lateral temperatiamed, therefore, density <| 45} s
inhomogeneity. How do we generalize the spinodal line, ob- <
tained forA — o, to finite A’s? Let us consider a small sinu- o
soidal density perturbation, in the lateral direction, around a Bt ed bt
stripe state. The fastest growirfgr the slowest decaying . .
H ; ; 40 0 3
perturbation is the one with the longest wavelength, compat- 10 10
ible with the boundary conditions in the lateral direction (b) A—AC
[4-6]. Consider a three-dimensional parameter space
(f,A,A) and define in it a two-dimensionatarginal stabil- FIG. 7. The dependence of the threshold value of the aspect

ity surfaceF(f,A,A)=0. By definition, at any point on this ratio A for the suppression of the phase separation on the parameter
surface the growth rate of the longest perturbation is equal td ~Ac (@. The phase separation instability occurs when
zero. The marginal stability surface represents a natural gert™>Amin(A). (b) shows that the apparent “straight line” (@ actu-
eralization of the spinodal line. Importantly, this definition @lly includes two different asymptotes and a crossover between
reduces to that of the spinodal line &s-« [see Ref[6] and them. The two asymptotes are shown by the dashed linesA the
Eq. (87) below]. The marginal stability surface can be com- > L aSymptoteAni(A)=52.14 - A™1 and the asymptote near the
: . - critical point, Apin=m(AA)YAA- Ao Y2 where A;=0.5213-- .

puted by linearizing Eq12) around the stripe state and solv- _ : o :
ing the resulting linear eigenvalue problem. Calculations Of'I"he results of numerical marginal stability analysis are denoted by
this kind were done previously for large far from the criti- circles.
cal point[4—€]. Three typical cross sections of the marginal . )
stability surface are shown in Fig. 6. As expected, the instacfitical point A=A, where Ay, diverges: Apyj,
bility region shrinks as\ goes down. As a result, the critical =42.085:-(A=A,)™% This asymptote is derived analyti-
point moves toward smallef's and largerA’s as A de-  cally in the next subsection.
creases. The monotonic dependence of the critical point po- An additional interesting issue is the change of bifurcation
sition on A is explained by the monotonic increase of the character, predicted by a weakly nonlinear analysis of the
lateral heat conduction as decreases. steady-state problem close to the marginal stability surface.

The threshold value of the aspect rato(A,f) has a At fixed A, the bifurcation is supercritical on an interval
minimum at somef [4,6] The respective minimum value f_(A)<f<f+(A) which lies within the SpinOdal interval
Amin depends only on\. In this work, we performed a sys- (f1,f2). On the intervald; <f<f_ andf, <f<f,, the bifur-
tematic investigation of this dependence. We found that cation is subcritica[8,9]. The next subsection addresses the
goes down monotonically as the parameterA. is positive  finite-size effects in the vicinity of the critical point, where
and increases. Though this monotonic decrease looks like @verything can be calculated analytically.
power law in the log-log plot, see Fig(dj, it is actually not.
Figure 1b) shows the same dependence on a different scale.
Two different asymptotes are clearly seen. The first of them,
at A>1, was obtained previoush,i,(A)=AA"Y2 where
A=52.14-- [4,6]. In this regime, the eigenfunction of the  This subsection addresses two-dimensional steady states
marginal stability problem is exponentially localized at thein a laterally finite system close to the critical point. Ag;,
elastic wallx=0. The second asymptote is valid close to thediverges at the critical poirjsee Eq(90) below], we assume

B. Steady states and bifurcation types close to the critical
point
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thatA, though finite, is very large. The starting point here is
again Eq(62), but on a finite interval A/2<y<A/2, so we
replace the boundary conditiori€7) by the no-flux condi-
tions

du
dy

du
dy

=0.
y=A/2

(77)
y=—A/2

Periodic boundary conditions can be treated in a similar

manner. Integrating Eq62) overy from —A/2 to A/2 and
using the boundary condition@7), we determinex and re-
write EqQ.(62) as
2y
A4F +us—-Agu - (us- AL =0,
where(- --) denotes spatial averaging,

1

A

(78)

Al2

J<—A/2

Introduce the rescaled coordinate=y/A, the order param-
eter u.=uA, and the control paramete® =A?s. Equation
(78) keeps its form in the rescaled variables,

d’u.
mﬁ UGS — AglS — (U S + AU =0, (79
while the boundary conditions become
du du
— (= =—12)=—(y-=1/2 = 0. 80
dy (y ) dy (y ) (80)

As the aspect ratid drops out in these variables, a universal
description can be obtained.

Obviously, anyy-independent state.=const solves the
problem(79) and(80) (ay-independent state is nothing but a
stripe statg What is the condition for the appearance of
(weakly) y-dependent solutions? Whenyadependent solu-

tion does appear, what is the type of bifurcation? To address

these questions, we seek a wealdgependent solution in
the form

Us = (Us) + @y SiN 7Y« + 8, COS 27ys + -+ . (81)

We substitute Eq81) into Eq.(79) and treat the terms origi-
nating froma, cos 2ry. as small corrections. Expanding up
to O(af), we obtain the following two algebraic equations:

3
& - 7T2A4 - 3A3<U*>2 - ZAgai + 3A3<U*>a2 = O,

3
5A3<u*>a§ +(8 — 4mA, - 3Ax(U))a,=0. (82
Putting herea;=a,=0, we obtain the marginal stability con-
dition
8 = 3AqUZ + 7PA, (83

where we have omitted the spatial averaginguof as it

becomes trivial on the marginal stability curve. The marginal

stability curve is shown as the thick solid line in Fig. 8. Now
we consider nonzero amplitudes and a, in Eq. (82) and

PHYSICAL REVIEW E7Q, 051310(2004)

10

FIG. 8. The marginal stability curve for a laterally finite system
(the thick solid ling is shown together with the spinodal and bin-
odal lines for an infinite systerntthe thin solid line and the thin
dotted line, respectively This is made possible by using the res-
caled order parameter. and control parametes.. The two black
circles show the point&5) and(86), where the bifurcation changes
its character from the supercriticdletween the circlggo the sub-
critical (outside.

eliminate a, in favor of a;. Above the marginal stability
curve (83), but close to it, we obtain the following equation
for the bifurcation curve:

1

One can see that, on the marginal stability curve, the bifur-
cation is either supercriticglvhen the term in the parenthe-
ses on the right-hand side of this equation is posjtioe
subcritical(when this term is negatiyeThe change of char-
acter of the bifurcation occurs at the points

8 = 3Ay(u)? - A, _ &
3A; T4

2A5(u)?

A,

) . (84

1/2
(W) = i(quA:) = +3.116 -, (85)
5
8= EnlA4 ~12.86 -, (86)

which lie on the marginal stability curv@3), see Fig. 8.
Note that the spinodal and binodal lines for an infinite
system can be expressed throughand &.: 5. =3Azu? and
&:Aguf, respectively. This makes it possible to show all the
curves(the spinodal and binodal for an infinite system and
the marginal stability curve for a finite systgmn the same
plot, see Fig. 8.
Going back from the rescaled variabl&sandu. to A and
a, we obtain for the marginal stability curve

A-Ac=A(a-a)’+

27,
—”2‘; ¢ (87)

or, in the variabled, A,
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772A4Ac cation charactgrare robust and independent of the small
A2 - (88)  details of the constitutive relations. Furthermore, most of our
analytical results are presented in quite a general form which
The physical meaning of this result becomes transpareninly assumes a Navier-Stokes structure of the hydrodynamic
when one compares it with Eg45) for the spinodal in the equationg(in the limit of nearly elastic collisions We used

A=Ag=Ay(f - )2+

infinite system. the Enskog-type constitutive relatiofisl] only for comput-
Solving Eq.(88) for A, we can find the threshold value of iNg numerical factorgand for the computations far from the
the aspect ratia\. at givenf and A, critical poinf). Obviously, the accuracy of our quantitative
results cannot be better than the accuracy of the Enskog-type
mALPAL? constitutive relations. Therefore, a 10-15 % error margin
A.= [A = Ao - Ay(f - f)2Y2" (89 should not be surprising.

There is an important additional aspect that can become
The phase separation instability occursAat A.. One can crucial when comparing the hydrodynamic theory with
see thatA. diverges on the spinodal line. The minimum molecular-dynamics simulations. As was already mentioned,
value of A« at a givenA corresponds té=f, for the hydrodynamics to be quantitatively accurate, the
mean free path of the particles must be much less than any
hydrodynamic length scale. It is well known that, for a sys-
tem with a thermal wall, the leading correction to hydrody-
) o - . namics enters thboundary conditiorin the form of a tem-
This quantity diverges at the critical point, as the lower asperature jump, proportional to the ratio of the mean free path

,n_Aill/ZAi.IZ

Amin= (A= AP (90)

ymptote in Fig. 7 shows. _ _ and the characteristic hydrodynamic length s¢ag19. In-
Finally, the two points of change of the bifurcation char- geeq, within the Knudsen layer, whose size is comparable to
acter[Egs.(85) and(86)] form a line, the mean free path, hydrodynamics is inapplicable, while the
5 particle velocity distribution significantly deviates from
A-Ac.==A(a-ay)?, (91) Maxwell distribution: the temperature of the incoming par-
3 ticles is less than that of the outgoing particles the out-
in the planea, A, which corresponds to the line going particles have their normal velocity randomized ac-
cording to a Maxwell distribution with gfixed) higher
A=A = §A (= f,)2 (92) temperaturg The effective temperature at the wall, for the
c~ 2 c ; inti ; ;
3 purpose of a hydrodynamic description in the bufkat is,

outside the Knudsen layglis always less thaii, [18,19, as
is indeed observed in MD simulation of this systg2h As a
result, the pressure of the system is redugettice that the
density does not change in this order; it can change only in
V. SUMMARY AND DISCUSSION the next, Burnett order The pressure reduction will obvi-
ously cause a shift of the critical point. For our numerical
In this work, we have employed granular hydrostatics toresults to be sufficiently accurate, the parameted/L,
determine the phase diagram of a prototypical driven granumust be very small, so that the mean free path is indeed
lar gas which exhibits spontaneous symmetry breaking anghuch less than the system dimensions. A\s e ?=const
van der Waals-like phase separation. We determined th@or example, at the critical poinh=A), a very smalle
spinodal line and the critical point of the phase separationimplies an extremely small inelasticity Despite the severe
We computed the spinodal and binodabexistencglines  Jimitation intrinsic to it, the nearly elastic case is conceptu-
close to the critical point. Effects of finite lateral size of the ally important, just because hydrodynamics is supposed to
confining box have been also addressed. These include dgive here a quantitatively accurate leading-order theory.
termining the line of change of the bifurcation character from  An interesting direction for future work is the phase sepa-
supercritical to subcritical. ration dynamics Here the hydrostatic equations should give
The shape of the binodétoexistencgline far from the  way to the full set of hydrodynamic equations. Close to the
critical point is still unknown. To handle this problem within critical point, however, a reduced description of the dynam-
the framework of the hydrostatic theory, one needs to solvecs should be possible. It has been suggested that such a
the nonlinear Poisson equati¢t?) in a laterally infinite box.  description is provided by the “van der Waals equation”
Most likely, this can only be done numerically, in a suffi- [7,10]. Though the van der Waals equation does capture
ciently long box. It is clear, however, that the binodal line in qualitatively much of the phenomenology of the phase sepa-
the variables(a,A) is solely determined by the function ration, as seen in the MD simulatiofig,10], its systematic
Q(#) which encapsulates all the necessary information abouderivation from the equations of granular hydrodynamics is
the equation of state, heat conductivity, and inelastic energgtill lacking, and the coefficients of the normal form are yet
loss. unknown. Importantly, our hydrostatic results close to the
It is worth mentioning that ouqualitative results (the  critical point, encapsulated in E¢62), fully agree with those
phase separation instability, the existence of the critical poinpredicted from the van der Waals normal equation. Further-
and spinodal and binodal lines, the suppression of the instanore, Eq.(62) provides quantitative relations between the
bility by the lateral heat conduction, and the change of bifur-yet unknown coefficients of the van der Waals equation.

in the planef, A. This line lies within the spinodal interval of
the problem corresponding th— .
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TABLE I. The source term&(x) and the initial conditions at=0 for Eq. (A1), for each of the auxiliary
functions shown in the first column. The functions in the first and second columns have the same arguments.

Initial conditions atx=0

w(x) S(x) w(0) w'(0)
W' (x,a.,Ac) 0 0 AcQ(ag)
Wa(x,ac, o) 0 1 0
\I,A(X1 ac, AC) Q(\I’C) 0 0
Waa(X, 8¢, Ac) AQuy(Y V2 0 0
‘I/Aa(xy achc) Ach/u,/;(‘I’c)\pAqra"'Qg//(q’c)\Pa 0 0
\paaa(x1 ac, Ac) 3ACQ¢¢(\I}C)\Pa\I’aa+ Acng,/u,//(\I’c)\Pg 0 0
d(x,az,Ap) -V, 0 0

Another avenue of future work requires going beyond hy-evaluated at the critical poird=a,, A=A.. One can easily
drodynamic description, as it includes two types of fluctua-show that each of these functions is a solution of the linear
tions in this system. The first of them was observed inproblem
molecular-dynamics simulations inside the spinodal region at
A=11050(that is, far from the critical pointin a wide re- , _
gion of aspect ratios around the finite-size threshold value W(x) = AQuUWW(X) = S(x) (A1)

[9]. It was found that these fluctuations dominate the dynam-

ics of the system, so they were called giant fluctuations. Thevith different source term§(x) and different initial condi-
second type of fluctuations is expected to occur, by analogyions atx=0. The source terms and initial conditions are
with the classical van der Waals phase transition, in a clostisted in Table I.

vicinity of the critical point. The fluctuations in these two  Let us show, as an example, the derivatior8of) and of
regimes should be describable in the framework of “fluctu-the initial conditions for two of the functionsl, and ¥ , ,.
ating hydrodynamics” of Landau and Lifshif29], general-  The starting point is Eq.15) with the initial conditions(16)
ized to granular gases in the limit of nearly elastic collisions.and (18) for the stripe solution¥(x,a,A). The stripe solu-
Fluctuating hydrodynamics is a Langevin-type theory whichtion depends om and A because they enter either the equa-

takes into account the discrete character of particles by addion or the initial conditions. Let us differentiate both sides of
ing o-correlated noise terms in the momentum and energ¥q. (15) with respect toa. We obtain

equationg19]. The fluctuations appear in this approach as a
hydrodynamic response of the system to the Langevin noise.
Unfortunately, this exciting direction of work is hindered by W(x,aA) - A dQ V. (xa,A)=0. (A2)
the fact that the Langevin term, which accounts for the dis- ame ame
creteness of the inelastic energy loss in the energy equation,

has yet to be calculate@].

Finally, it was assumed throughout the paper that thé)nce_\P(x,a,A) is known, Eq_.(AZ) is a Imgar differential
granulate is driven by a thermal wall. In experiment, a rap-quation for¥,. Now let us differentiate, with respect &
idly vibrating wall is usually used. Though qualitatively EdS-(16) and(18). We obtain the relations
similar, the phase diagram of the case of a rapidly vibrating

wall can be quantitatively different,5,§. v, (0,aA)=1 and V¥, 0,aA)=0 (A3)
1N a 1 & 1

A | ymwixan)
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APPENDIX: COMPUTING THE COEFFICIENTS aA(X! a,A)=A dy ,p:qf(x,a,A)\PaA(X, a,A)
Consider the stripe solutioff(x,a, A). The expansions in dQ
the vicinity of the critical point, used throughout the paper, = dy Wax,a,A)
include several derivatives of this function which need to be y=rixa.n)
evaluated. These afe’, V,, Vaa Vi, Vra Vaaa and the d’Q
additional functiond® [see Eqs(58) and (59)], all of them tA 5 WA a,A)Pa(x,a,A), (A4)
d’ﬁz Y=V (x,a,A)
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‘“P 0; !A = 0’ A5 1 '
aA( a ) ( ) W(X) = m[\l’,(X)J \I,a(g)s(g)dg
o 0

¥2r(0,8,A)=0. (A6) ~ V(%) f W’(f)s(é)dél +CW,(x) + C¥' (%),
0

Again, once¥, ¥,, andWV, are known, Eq(A4) is a linear A7

equation for¥,,. Here the source term is nonzero, while the WhereC, andC, are integration constants. To satisfy the zero

initial conditions(A5) and(A6) are zero. Substituting in Egs. initial conditions atx=0, we must choos€;=C,=0 in all

(A2)—(A6) a=a, and A=A, we obtain the second and fourth cases. Furthermore, evaluatingx) at the thermal wall

rows of Table I. The other rows of Table | can be obtained inx=1, we observe that the term proportionaltg(x) in Eq.

a similar way. (A7) vanishes, adl,(1)=0 at the critical point. Therefore,
The functions?’(x,a., Ay and¥,(x,a.,A.) are special, for all functions from Table | excep¥’ and¥,, we obtain

as they satisfy the homogeneous form of E4l): S(x)=0. v'(1)

Therefore, once they are found, the rest of the functions from w(l,a,A) = ————

1
Y (§)S(§)d¢. (A8)
Table | can be expressed through them, AQ(ay) J o
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